Update on Adult Immunization for Pharmacists

Shelly McNeil, MD

Professor of Medicine, Chief, Division of Infectious Diseases Clinician Scientist, Canadian Center for Vaccinology Infection Prevention and Control NS Annual Conference Feb. 27, 2018

Disclosures

- Research grants: GSK, Merck, Sanofi Pasteur, Pfizer
- Speakers fees and honoraria: GSK, Merck, Pfizer, Sanofi
- Clinical trials: (all) vaccine manufacturers
- Prior member of NACI (Zoster, Rotavirus, Adult immunization and HPV lead), CIC HPV Task Group

Objectives

- At the end of this session the attendee will:
 - Describe the burden of varicella zoster, rationale for vaccination, and current vaccine recommendations
 - Discuss vaccine options for prevention of influenza in older adults
 - Describe the current guidelines for use of pneumococcal vaccines in adults
 - Review the current recommendations for MMR in HCW

Update on Shingles Vaccines

VZV: Pathophysiology of Reactivation

1. Arvin AM. In: Knipe DM et al (eds). *Fields Virology*. Volume 2. Fourth Edition. Lippincott Williams & Wilkins, New York, 2001. pp. 2731-67. 2. Straus SE, et al. In: Freedberg IM, et al (eds). *Fitzpatrick's Dermatology in General Medicine*. Volume 2. Fifth Edition. McGraw-Hill, New York, 1999. pp. 2427-50.

Shingles

 Shingles is a painful vesicular eruption in a dermatomal distribution

Dermatomes are areas on the skin supplied by sensory fibers of the spinal nerves

Natural History of VZV

Edgar Hope-Simpson

VZV = varicella zoster virus. Hope-Simpson RE. Proc R Soc Med 1965; 58:9-20.

CANADIAN IMMUNIZATION RESEARCH NETWORK

HZ Burden and Complications

- 1 out of 3 Canadians will experience an episode of HZ in their lifetime
 - 1 out of 2 for those aged 85 years and older
- Complications can severely affect the patient's quality of life

ACUTE HZ PAIN

- loss of work
- low quality of life

PHN (10-22%) Ocular complications Scarring Secondary bacterial infections

HZ = herpes zoster; PHN = postherpetic neuralgia; QALY = quality-adjusted life year. Brisson M, et al. Hum Vaccin 2008; 4(3):238-45.

CANADIAN IMMUNIZATION RESEARCH NETWORK

Prevalence and Duration of PHN (PHN: Pain for > 30 Days After Rash Onset)

Prevalence and duration of acute pain and PHN increase with age

de Moragas JM, et al. AMA Arch Derm 1957; 75(2):193-6. Kost RG, et al. N Engl J Med 1996; 335(1):32-42.

The Shingles Prevention Study (SPS)

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 2, 2005

VOL.352 NO.22

A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults

SPS Results: Vaccine Efficacy – HZ Incidence by Age

SPS Results: Vaccine Efficacy – PHN Incidence by Age

Summary of post-marketing (Real-world) Effectiveness: immunocompetent subjects

Table 1 Summary of the characteristics and results from three retrospective cohort (nested case-control) studies assessing the effectiveness of the live-attenuated herpes zoster vaccine, Zostavax, in immunocompetent subjects

Characteristics						Vaccine effectiveness, % (95% CI)				
Study ID	Study setting/ period	Median follow-up, years	Population	Total/vaccinated subjects	Herpes zoster	Post-herpetic neuralgia	Ophthalmic zoster	Hospitalization for herpes zoster		
Tseng et al. [35]	KPSC/ 2007-2009	1.6	Immunocompetent subjects aged ≥60 years	303,044/75,761	55 (52; 58)	NA	63 (39; 77)	65 (49; 76)		
Langan	Medicare/	1.6	Immunocompetent and	766,330/29,785ª	48 (39; 56) ^a	62 (37; 77) ^c	NA	NA		
et al. [36]	2007-2009		immunocompromised subjects aged ≥65 years	625,409/24,392 ^b	51 (41; 59) ^b	59 (21; 79) ^d				
Tseng et al. [37]	KPSC/ 2007-2014	Not reported	Immunocompetent subjects aged ≥60 years	704,312/176,078	51 (50; 53)	NA	NA	NA		

KPSC Kaiser Permanente Southern California, CI confidence interval, NA not assessed

⁴ Overall study population (immunocompetent and immunocompromised subjects)

^b Only immunocompetent subjects

^c Postherpetic neuralgia at 30 days

^d Postherpetic neuralgia at 90 days

Ansaldi et al., Adv Ther (2016) 33:1094-1104

HZ Vaccine Duration of Protection

2. National Advisory Committee on Immunization (NACI) 2014. PHAC Publication 130536.

1. Morrisor

HZ Vaccine Duration of Protection

From: Declining Effectiveness of Herpes Zoster Vaccine in Adults Aged ≥60 Years J Infect Dis. 2016;213(12):1872-1875. doi:10.1093/infdis/jiw047 J Infect Dis | © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com

Duration of protection against PHN

Table 5. Effectiveness of ZOSTAVAX in reducing the risk of PHN by age at vaccination and time since vaccination

		All Ages								
	50	-59 Years	60	60-69 Years		70-79 Years		0+ Years	Combined	
	PHN Cases	VE % (95% CI)	PHN Cases	VE % (95% CI)	PHN Cases	VE % (95% Cl)	PHN Cases	VE % (95% CI)	VE % (95% Cl)	
Overall VE	5	63% (11, 85)	119	71% (65, 76)	134	70% (63, 75)	64	62% (50, 71)	69% (65, 72)	
Time since vaccination	on (year	s)								
30 days to <1 year	4	31% (-85, 75)	15	85% (75, 91)	15	86% (76, 92)	13	77% (61, 87)	82% (76, 87)	
1 to <2 years	1	81% (-39, 97)	27	67% (51, 77)	30	66% (50, 76)	13	65% (40, 80)	66% (57, 73)	
2 to <3 years	0		21	67% (49, 79)	28	60% (42, 73)	15	38% (-3, 63)	60% (49, 69)	
3 to <4 years	0		16	71% (53, 83)	17	70% (52, 82)	8	53% (5, 77)	68% (57, 77)	
4 to <5 years			17	64% (41, 78)	22	55% (31, 71)	5	62% (9, 85)	60% (45, 70)	
5 to <6 years			14	61% (33, 77)	12	69% (44, 82)	6	34% (-49, 71)	61% (45, 73)	
6 to <7 years			5	78% (47, 91)	9	62% (26, 81)	4	22% (-114,71)	65% (44, 79)	
7 to <8 years			4	47% (-44, 81)	1	87% (8, 98)	0	~	70% (28, 88)	

VE was calculated as (1-hazard ratio)*100.

Cox models adjusted for calendar time, age, sex, race/ethnic group, healthcare resource utilization (flu vaccination, # of weeks of outpatient visits per year), comorbid conditions (DxCG score, HCUP risk score), immunocompromised status during follow-up. Abbreviations: VE denotes vaccine effectiveness; CI confidence interval; DxCG diagnostic cost group; HCUP healthcare cost and utilization project.

Marks M, Barlett J, Fireman B et al. Poster presented at: Canadian Pain Society Annual Scientific Meeting 2017 May 23726; Halifax CATWOR

Vaccine effectiveness in immunocompromised adults

Charact	eristics		Results					
Study ID	Study setting/	Median follow-up, days	Population	Total/vaccinated subjects	VCR, %	HZ inciden person-year	VE against	
	period					Vaccinated	Unvaccinate	d HZ, % (95% CI)
Zhang et al. [49]	Medicare/ 2006-2009	730	Individuals diagnosed with rheumatoid arthritis, psoriatic arthritis, psoriasis, ankylosing spondylitis or inflammatory bowel disease (Crohn's disease or ulcerative colitis) aged ≥60 years	463,541/18,683	4.0	6.7 (5.7; 7.9)	11.6 (11.4; 11.9)	39 (29;48)
Langan et al. [36]	Medicare/ 2007–2009	584	Individuals with rheumatoid arthritis, inflammatory bowel disease aged ≥65 years (34% aged ≥80 years)	140,925/5531	2.3	5.4 (4.6; 6.4)	10.0 (9.8; 10.2)	37 (6; 58) ^b
Tseng et al. [50]	KPSC/ 2007-2012	730	Individuals who had received chemotherapy with myelosuppressive agents aged ≥60 years	21,476/4710	21.9	12.9 (10.5; 15.8)	22.1 (20.3; 23.9)	42 (27; 54)ª

KPSC Kaiser Permanente Southern California, CI confidence interval, VCR vaccine coverage rate, VE vaccine effectiveness

^a Adjusted VE against HZ

^b VE in immunosuppressed individuals

KPSC Kaiser Permanente Southern California, CI confidence interval, VCR vaccine coverage rate, VE vaccine effectiveness

a Adjusted VE against HZ

b VE in immunosuppressed individuals

Ansaldi et al., Adv Ther (2016) 33:1094-1104

SPS Adverse Events

	Vaccine n = 19,270	Placebo n = 19,276				
Vaccine-related systemic events	6.3%	4.95%				
Injection site reactions Erythema Pain or tenderness Swelling	48.3% 35.8% 34.5% 26.2%	16.6% 7.0% 8.5% 4.5%				
All were different with p < 0.05						

Efficacy, Safety, and Tolerability of HZ Vaccine in Persons Aged 50–59 Years

NACI Recommendations

Immunization with HZ vaccine for **<u>immunocompetent</u>** adults:

- Vaccine is recommended for adults \geq 60 years of age
- Vaccine may be used in adults 50-59 years of age
- Vaccine may be administered to individuals ≥ 50 years old with a prior history of HZ. Based on expert opinion, it is recommended that the vaccine be given at least one year following the last episode of HZ
 - Annual recurrence rate in immunocompetent adults has varied across studies/methods:
 - Yawn et al 2011: 5.7% recurrence rate over 8 years (and 12% in immunocompromised adults)

NACI Recommendations (cont'd)

Immunization with HZ vaccine for **<u>immunosuppressed</u>** adults:

- Individuals on low-dose immunosuppressive therapy
 - It is reasonable to consider HZ vaccine in patients on lower doses of immunosuppressive agents: prednisone < 20 mg/day; methotrexate ≤ 0.4 mg/kg/week, azathioprine ≤ 3.0 mg/kg/day; 6-mercaptopurine ≤ 1.5 mg/kg/day
- Individuals on anti-TNF biologics
 - HZ vaccine may be used; on a case-by-case basis after review with an expert in immunodeficiency

See supplementary slides for more detailed NACI recommendations. National Advisory Committee on Immunization (NACI) 2014. PHAC Publication 130536.

FAQs

- Use in people who have had shingles? YES; wait 1 yr
- Can I give with flu and pneumococcal vaccines? YES
- Can I give to people under 50? YES (off label)- special attention to those with anticipated immunosuppression
- What should I do with IC patients requesting vaccination? Give HZ/su vaccine

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults

Himal Lal, M.D., Anthony L. Cunningham, M.B., B.S., M.D., Olivier Godeaux, M.D., Roman Chlibek, M.D., Ph.D., Javier Diez-Domingo, M.D., Ph.D., Shinn-Jang Hwang, M.D., Myron J. Levin, M.D., Janet E. McElhaney, M.D.,
Airi Poder, M.D., Joan Puig-Barberà, M.D., M.P.H., Ph.D., Timo Vesikari, M.D., Ph.D., Daisuke Watanabe, M.D., Ph.D., Lily Weckx, M.D., Ph.D., Toufik Zahaf, Ph.D., and Thomas C. Heineman, M.D., Ph.D., for the ZOE-50 Study Group*

Recombinant adjuvanted subunit vaccine

- Glycoprotein E
- ASO1_B- MPL + QS21 novel adjuvant which stimulates strong CD4 T cells and humoral responses
- RDBPC trial- n= ~7700/arm, healthy adults 50+y
- Vaccine vs placebo IM at 0, 2 mos

Vaccine Efficacy

Table 2. Vaccine Efficacy against the First or Only Episode of Herpes Zoster Infection.*									
Cohort and Age Group	HZ/su Group				Placebo Group				Vaccine Efficacy†
	No. of Participants	No. of Confirmed Cases	Cumulative Follow-up Period ‡	Rate of Herpes Zoster	No. of Participants	No. of Confirmed Cases	Cumulative Follow-up Period‡	Rate of Herp∉s Zostur	
			person-yr	no./1000 person-yr			person-yr	no./1000 person-yr	% (95% CI)
Modified vaccinated cohort									
All participants in cohort	7344	6	23,297.0	0.3	7415	210	23,170.5	9.1	97.2 (93.7–99.0)
50–59 yr	3492	3	11,161.3	0.3	3525	87	11,134.7	.8	96.6 (89.6–99.3)
60–69 yr	2141	2	7,007.9	0.3	2166	75	6,952.7	10 8	97. <mark>4 (</mark> 90.1–99.7)
70 yr or older	1711	1	5,127.9	0.2	1724	48	5,083.0	94	97.9 (87.9–100.0)
Total vaccinated cohort									
All participants in cohort	7698	9	25,584.5	0.4	7713	235	25,359.9	9	96.2 <mark>(</mark> 92.7–98.3)
50–59 yr	3645	3	12,244.9	0.2	3644	95	12,162.5	7.8	96.9 <mark>(</mark> 90.6–99.4)
60–69 yr	2244	5	7,674.1	0.7	2246	83	7,581.8	10.9	94.1 (85.6–98.1)
70 yr or older	1809	1	5,665.5	0.2	1823	57	5,615.6	10.2	98.3 (89.9–100.0)

et all the state of the state o

Table 3. Adverse Events and Reactogenicity.*

Variable	HZ/su Gr	oup	Placebo Group		
	no. of participants/total no.	% (95% CI)	no. of participants/total no.	% (95% CI)	
Reactogenicity subgroup	4460		4466		
Within 30 days after vaccination					
Unsolicited report of adverse event	1308	29.3 (28.0–30.7)	1226	27.5 (26.1–28.8)	
Grade 3 unsolicited report of adverse event†	208	4.7 (4.1–5.3)	151	3.4 (2.9–4.0)	
Within 7 days after vaccination					
Solicited or unsolicited report of adverse event	3765	84.4 (83.3–85.5)	1689	37.8 (36.4–39.3)	
Grade 3 solicited or unsolicited report of adverse event†	760	17.0 (15.9–18.2)	145	3.2 (2.7–3.8)	
Grade 3 solicited or unsolicited report of adverse event related to vaccination	694	15.6 (14.5–16.7)	83	1.9 (1.5–2.3)	
Solicited report of injection-site reaction	3571/4382	81.5 (80.3–82.6)	522/4377	11.9 (11.0–12.9)	
Pain	3464/4382	79.1 (77.8–80.2)	490/4377	11.2 (10.3–12.2)	
Redness	1664/4382	38.0 (36.5–39.4)	59/4377	1.3 (1.0–1.7)	
Swelling	1153/4382	26.3 (25.0–27.6)	46/4377	1.1 (0.8–1.4)	
Grade 3 solicited report of injection-site reaction†	417/4382	9.5 (8.7–10.4)	16/4377	0.4 (0.2–0.6)	
Solicited report of systemic reaction	2894/4375	66.1 (64.7–67.6)	1293/4378	29.5 (28.2–30.9)	
Myalgia	2025/4375	46.3 (44.8–47.8)	530/4378	12.1 (11.2–13.1)	
Fatigue	2008/4375	45.9 (44.4–47.4)	728/4378	16.6 (15.5–17.8)	
Headache	1716/4375	39.2 (37.8–40.7)	700/4378	16.0 (14.9–17.1)	
Shivering	1232/4375	28.2 (26.8–29.5)	259/4378	5.9 (5.2–6.7)	
Fever	939/4375	21.5 (20.3–22.7)	132/4378	3.0 (2.5–3.6)	
Gastrointestinal symptoms	788/4375	18.0 (16.9–19.2)	387/4378	8.8 (8.0–9.7)	
Grade 3 solicited report of systemic reaction:	498/4375	11.4 (10.5–12.4)	106/4378	2.4 (2.0–2.9)	

Conclusions

- Adjuvanted subunit vaccine demonstrates excellent efficacy in healthy adults of all ages
- Excellent immunogenicity in HIV/HSCT
- Efficacy in immunocompromised patients being evaluated
- May fill important gap for prevention of HZ in IC hosts
- Adverse event profile and 2 dose schedule may pose challenges for optimal uptake

Current Status

- Authorized for use in Canada Oct 2017; avail now
- No NACI statement yet- Spring 2018 (?)
- US ACIP- preferential recommendation for recombinant vaccine in immunocompetent persons aged 50+; revaccinate those prev vaccinated with live attenuated vaccine (≥ 8 weeks later)
- ACIP and NACI recommendation regarding use in IC patients pending; Note no contraindication/precaution in PM

Update on influenza vaccines for older adults

The Effect of Immunosenescence

Incidence of serious outcomes of influenza 1

While adults over 65 represent just 15% of the Canadian population...

...they experience:

- 70% of influenza-related hospitalizations AND
- >90% of influenza-related deaths

Statistics Canada Population projections: Canada, the provinces and territories, 2013 to 2063. Available at: http://www.statcan.gc.ca/dailyquotidien/140917/dq140917aeng.htm. Accessed on October 8, 2015. Public Health Agency of Canada (PHAC). FluWatch. May 3 to May 9, 2015.

The Effect of Immunosenescence Response to vaccination ♥

Monto AS, Ansaldi F, Aspinall R, et al. Vaccine. 2009;27:5043-5053.

Vaccine Preventable Disability

Catastrophic disability

- ♦ Defined as a loss of independence in \geq 3 activities of daily living
- 72% who experience catastrophic disability have been hospitalized
- Leading causes of catastrophic disability
 - 1. Strokes
 - 2. CHF
 - 3. Pneumonia and influenza
 - 4. Ischemic heart disease
 - 5. Cancer
 - 6. Hip fracture

Ferrucci et al. JAMA 277:728, 1997 Barker et al. Arch Int Med 158:645, 1998 Falsey et al. *N Engl J Med*. 2005;352:1749 Andrew et al, IDWeek 2016

Figure credit Dr. Janet McElhaney

NADIAN IMMUNIZATION RESEARCH NETWOR

15% of 65+

hospitalized

with

influenza

Adjusted VE estimate by influenza subtype (11/12, 12/13, 13/14 pooled)

Adjusted VE estimate by severity (11/12, 12/13, 13/14 pooled)

Not all older adults are alike!

	Non- frail	Pre-frail	Frail	Most frail	
	N=92	N=229	N=165	N=19	p-value
Mean age (SD), years	76.0 (7.9)	79.0 (7.7)	81.9 (8.1)	84.5 (7.7)	< 0.001
Influenza vaccination, n (%)	54 (58.7)	156 (68.1)	126 (76.4)	15 (78.9)	0.663
Influenza case, n (%)	35 (38.0)	64 (27.9)	67 (40.6)	10 (52.6)	0.018
Admitted from a LTCF, n (%)	0 (0.0)	3 (1.3)	16 (9.7)	12 (63.2)	< 0.001
Admitted to ICU, n (%)	15 (16.3)	25 (10.9)	19 (11.5)	1 (5.3)	0.36
Died, n (%)	5 (5.4)	9 (3.9)	25 (15.2)	5 (26.3)	0.023
VE against influenza-	77.6%	<mark>51.0%</mark>	59.6%	-24.8%	
hospitalization, % (95% CI)	(39.3, 91.7)	(5.2, 74.7)	(8.0, 82.3)	(-1040.4, 86.3)	

Andrew et. al, IDWeek 2016, Oct. 26-30, 2016, New Orleans, LO (Abstract p710)

 Overall matched, adjusted effectiveness to prevent hospitalization in adults ≥ 65y over 3 seasons (2011/12- 2013/14) was

42% (34-48%)

Effectiveness for the prevention of death was 75% (44-88%)

Vaccination remains the best way to protect against influenza but improved vaccines for this vulnerable population urgently needed.

McNeil et al. IDWeek 2016, Oct. 26-30, 2016, New Orleans, LO, Abstract O910

"Enhanced" Influenza Vaccines for Older Adults: Can we do better?

Adjuvanted TIV

- Standard dose TIV adjuvanted with MF-59 (no adjuvanted QIV)
- Squalene oil-in-water adjuvant; mechanism of action not fully known
 - Licensed in >20 countries; >85 mil doses distributed
 - enhance antigen persistence at the injection site and increase recruitment and activation of antigen presenting cells
 - Improved immunogenicity and cross protection in children and older adults

Effectiveness of Adjuvanted TIV

- Single RCT vs non-adjuvanted TIV against ILI showed similar effectiveness (Frey et al, Vaccine 2014)
- (Most) observational studies suggest improved VE vs non-adj TIV in prevention of lab-confirmed influenza; methodologic limitations with most

Adjusted VE estimate by vaccine type (11/12, 12/13, 13/14 pooled)

McNeil et al, IDWeek 2016

High-Dose TIV

- 60 mcg hemagglutinin (HA) of each influenza strain per 0.5 mL dose (4 times that of standard-dose influenza vaccines)
- <u>Trivalent</u>, inactivated, split-virus influenza vaccine
- No adjuvant, antibiotic, gelatin, or preservative
- Authorized for use in ≥65y in Canada Sept. 2015; Available in Canada as of 2016/17.
- Not publicly funded in NS. Cost: \$88.79 (Shopper's);
 ~\$65 (Costco)

- Study conducted over two influenza seasons (11/12, 12/13)
- Primary endpoint based on influenza caused by any influenza strain associated with a protocol-defined ILI

Relative Vaccine Efficacy of High-Dose Vaccine

Benefit demonstrated across age groups, influenza types, comorbidities, and frailty-associated conditions

PRIMARY ENDPOINT	65-74 Years of Age	75+ Years of Age
	19.7% (95% CI: 0.4; 35.4)	32.4% (95% CI: 12.5; 52.5)
24.2%	≥1 High-Risk Comorbidity	1 Frailty-Associated Condition
more efficacious* (95% CI: 9.7; 36.5)	22.1% (95% Cl: 3.9; 37.0)	27.5% (95% CI: 0.4; 47.2)
Demonstrated SUPERIOR	Similar to Vaccine Strains	Culture-confirmed Influenza
confirmed ILI compared to standard dose Vaccine ³	35.3%	23.1 %
	(95% CI: 12.5; 52.5)	(95% CI: 7.5; 36.2)
*against laboratory-confirmed influenza illness caused l	y any virus type or subtype in adults 65 years of age an	nd older

DiazGranados et al, N Engl J Med 2014;371:635-645 DiazGranados et al, Vaccine 2015; 33:4565-4571

FLUZONE® High-Dose vaccine. Product Monograph. Sanofi Pasteur Inc.; September 2015.

Baseline Comorbid Conditions in Study Participants

- 2/3 of participants had 1 or more chronic condition
- 1/3 of participants had 2 or more chronic conditions
- The most common comorbid conditions included:
 - Diabetes mellitus (22%-23% of each group)
 - Coronary artery disease (17.1% of each group)
 - Chronic obstructive lung disease (9.4% of each group)
 - Asthma (8.8% of each group)
 - Atrial fibrillation (~7% of each group)
 - Valvular heart disease (4.6% of each group)
 - Congestive heart failure (2.8% of each group)
- ~74% of both groups received influenza vaccine the previous season

Reference: DiazGranados CA, et al. N Engl J Med. 2014;371(7):635-645.

Real World Effectiveness of High-Dose vaccine

- Izurieta *et al* joint study by the US CDC, FDA, and the Centers for Medicare and Medicaid Services (CMS)
 - analysis of CMS data from the 2012-2013 influenza season among the ~2.5 million Medicare beneficiaries comparing High-Dose vaccine to standard-dose influenza vaccines
 - High dose vaccine:
 - 22% (95% CI: 15-29%) more effective in prevention of labconfirmed ILI
 - **22%** (95% CI: 16-27) more effective in preventing influenza related ED visits and hospitalization
 - 36% (95%CI: 13-54) more effective in people 85y+

Izurieta HS et al. Lancet Infect Dis 2015;15:293-300

Safety and tolerability

Adverse	High-dose vaccine (%)	Standard-dose vaccine (%)	
Injection site reactions			
Pain	35.6	24.3	
Erythema	14.9	10.8	
Swelling	8.9	5.8	
Systemic adverse events			
Myalgia	21.4	18.3	
Malaise	18	14	
Headache	16.8	14.4	
Fever	8.9	5.8	

Key changes to NACI recommendations for 2016/17

An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI)_±

Canadian Immunization Guide Chapter on Influenza and Interim Statement on Seasonal Influenza Vaccine for 2016-2017

 LAIV no longer recommended <u>preferentially</u> for children; quadrivalent <u>preferred</u> (can use live-attenuated or inactivated)

- Q-LAIV may be used without special precautions in persons with egg allergy (irrespective of severity)
- Adults with neurologic or neurodevelopmental conditions added to high-risk group

An Advisory Committee Statement (ACS)/National Advisory Committee on Immunization (NACI): Canadian Immunization Guide Chapter on Influenza and Statement on Seasonal Influenza Vaccine for 2016–2017.

Key changes to NACI recommendations for 2016/17 (cont.)

An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI)₁

Canadian Immunization Guide Chapter on Influenza and Interim Statement on Seasonal Influenza Vaccine for 2016-2017

Public Health Agence de la santé Agency of Canada publique du Canada

"Based on the available evidence, NACI concludes that there is evidence that high dose TIV should provide superior protection compared with standard dose TIV for adults ≥65 years of age. This superior relative protection compared to standard dose TIV appears to increase with increasing age over 65 years. A similar conclusion has not been reached for adjuvanted TIV."

"Considering the burden of disease associated with influenza A(H3N2) and the evidence of superior efficacy of high dose TIV compared to standard dose TIV, it appears that high dose TIV would provide the greatest benefit to the ≥65 years age group."

An Advisory Committee Statement (ACS)/National Advisory Committee on Immunization (NACI): Canadian Immunization Guide Chapter on Influenza and Statement on Seasonal Influenza Vaccine for 2016-2017.

Conclusions

- Standard TIV provides moderate protection against hospitalization in older adults
- VE is similar in non-frail adults and younger adults
- VE increases as severity of the outcome assessed increases (death> ICU/ventilation> hospitalization)
- Both adjuvanted TIV and high-dose TIV offer improved effectiveness in older adults
- Based on RCT data, NACI concluded that high-dose TIV offers superior protection and greatest benefit in older adults
- Improved relative efficacy of high-dose vaccine in elderly and frail coupled with evidence of conserved VE in nonfrail adults may allow prioritization of enhanced vaccines

Update on Pneumococcal Disease and Prevention

Risk Factors for Pneumococcal Disease

Age specific

- <2 years (immature immune system)
- ≥65 years (immunosenescence)
- Lifestyle related
 - Alcoholism
 - Smoking
 - Homelessness
 - Illicit drug use
- Organ related
 - Functional or anatomic asplenia
 - Chronic diseases of the heart, lung, liver, or kidneys (including asthma)
 - Cerebrospinal fluid leakage
 - Organ transplantation
- 1. WHO. Wkly Epidemiol Rec. 2008;83(42):373-384.
- 2. CDC. MMWR Morb Mortal Wkly Rep. 2009;57(53):Q1-Q4.
- 3. Weiskopf D et al. *Transpl Int*. 2009;22(11):1041-1050.
- 4. Weinberger B et al. *Clin Infect Dis*. 2008;46(7):1078-1084.

Immunosuppressive conditions

- Diabetes mellitus
- Congenital or acquired immunodeficiency (including HIV)
- Hematological or generalized malignancies
- Hematopoietic cell transplantation
- Immunosuppressive therapy (including systemic corticosteroids)
- Other
 - Cochlear implants

ORIGINAL ARTICLE

Asthma as a Risk Factor for Invasive Pneumococcal Disease

Thomas R. Talbot, M.D., M.P.H., Tina V. Hartert, M.D., M.P.H., Ed Mitchel, M.S., Natasha B. Halasa, M.D., M.P.H., Patrick G. Arbogast, Ph.D., Katherine A. Poehling, M.D., M.P.H., William Schaffner, M.D., Allen S. Craig, M.D., and Marie R. Griffin, M.D., M.P.H.

N Engl J Med 2005;35:2082-2090.

RESULTS:

- 18% of cases and 8.1% of controls had asthma
- Annual incidence rates of IPD:
 - 1.2/10,000 healthy persons
 - 2.3/10,000 persons with low-risk asthma
 - 4.2/10,000 persons with high-risk asthma

Adjusted OR = 2.4 (95% CI 1.8-3.3) NNV= 306 (PCV-13); 533 (PPV23) vs 225 (PPV23 in 65+)

Indications for Immunization

- Asplenia/hyposplenism (Remember IBD)
- Chronic cardiorespiratory disease
- Cirrhosis
- Alcoholism
- Chronic renal disease/nephrotic syndrome
- Diabetes
- CSF leak/cochlear implant
- Multiple myeloma
- Smokers
- Illicit drug use
- Homeless
- Asthma requiring care in the preceeding 12 months

PPV: Uptake

- Despite publicly funded programs in all P/Ts, coverage rates consistently low
- In Ontario:
 - 14% in <65yo with comorbidity
 - 33% in ≥65yo healthy
 - 55% in ≥ 65yo with comorbidity AI-Sukhni W et al Vaccine 2008; 26:1432-1437

• Edmonton: 22% of adults admitted with CAP Johnstone 2007; 167: 1938-1943

 Canada (PCIRN SOS Network)- 53% of adults admitted with CAP McNeil et al; IDSA 2016

Risk of IPD: PPV vs. Placebo

Study or subgroup	Vaccine	Control	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Random,95% Cl		M-H,Random,95% Cl
I All studies					
Alfageme 2006	0/298	0/298	•	0.0 %	0.0 [0.0, 0.0]
Austrian 1980b	0/6782	4/6818	<u>ـــــ</u>	3.9 %	0.11 [0.01, 2.07]
Davis 1987	1/50	0/53		3.2 %	3.24 [0.13, 81.47]
Gaillat 1985	0/937	1/749		3.2 %	0.27 [0.01, 6.54]
Kaufman 1947	8/5750	34/5153		55.8 %	0.21 [0.10, 0.45]
Klastersky 1986	1/26	1/21		4.1 %	0.80 [0.05, 13.60]
Leech 1987	1/92	0/97		3.2 %	3.20 [0.13, 79.47]
Ortqvist 1998	1/339	5/352		7.2 %	0.21 [0.02, 1.77]
Ríley 1977	2/2713	14/2660		15.1 %	0.14 [0.03, 0.61]
Simberkoff 1986	1/1145	1/1150		4.3 %	1.00 [0.06, 16.08]
Subtotal (95% CI)	18132	17351	•	100.0 %	0.26 [0.15, 0.46]
Total events: 15 (Vaccine), 60 ((Control)				
Heterogeneity: Tau² = 0.0; Chi	i ² = 7.56, df = 8 (P	= 0.48); l ² =0.0%			
Test for overall effect: Z = 4.57	7 (P < 0.00001)				
			0.01 0.1 1.0 10.0 100.0 Eavours vaccine Eavours control	VE	= 74% (64%-85%

All Cause Pneumonia: PPV vs. Placebo

Study or subgroup	Vaccine	Control	Odds Ratio	Weight	Odds Ratio
	N/IN	NIN	M-H,Random,95% CI		M-H,Random,95% CI
I All studies					
Alfagerne 2006	37/298	39/298	T	8.4 %	0.94 [0.58, 1.52]
Austrian 1976a	85/1493	359/3002	•	10.1 %	0.44 [0.35, 0.57]
Austrian 1980a	154/607	144/693	-	10.1 %	1.30 [1.00, 1.68]
Austrian 1980b	268/6782	274/6818	+	10.5 %	0.98 [0.83, 1.17]
Davis 1987	3/50	7/53	- _	3.1 %	0.42 [0.10, 1.72]
Gaillat 1985	3/937	12/749	_	3.6 %	0.20 [0.06, 0.70]
Kaufman 1947	99/5750	227/5153	•	10.2 %	0.38 [0.30, 0.48]
Klastersky 1986	2/26	4/21		2.1 %	0.35 [0.06, 2.16]
Ortqvíst 1998	63/339	57/352	+	9.1 %	1.18 [0.80, 1.75]
Riley 1977	27/2713	40/2660	-	8.4 %	0.66 [0.40, 1.08]
Simberkoff 1986	48/1145	38/1150	+	8.8 %	1.28 [0.83, 1.98]
Smit 1977a	37/983	121/2036	-	9.3 %	0.62 [0.42, 0.90]
Smit 1977b	9/540	28/1135		6.3 %	0.67 [0.31, 1.43]
Subtotal (95% CI)	21663	24120	•	100.0 %	0.71 [0.52, 0.97]
íotal events: 835 (Vaccíne), 13	850 (Control)				
leterogeneity: Tau ² = 0.23; C	'hi² = 94.15, df = 12	(P<0.00001); l ² =87	%		
fest for overall effect: Z = 2.19	9 (P = 0.029)				
- · · · · ·			0.01 0.1 1.0 10.0 100.0		
- 20% (2-	$\mathbf{A}\mathbf{Q}(\mathbf{A})$		Favours vaccine Favours control		

All Cause Mortality: PPV vs. Placebo

Study or subgroup	Vaccine	Control	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Random,95% CI		M-H,Random,95% CI
I All studies					
Austrian 1980a	35/607	44/693	+•-	9.2 %	0.90 [0.57, 1.43]
Austrian 1980b	45/6782	47/6818	-	10.0 %	0.96 [0.64, 1.45]
Davis 1987	14/50	13/53	+	4.5 %	1.20 [0.50, 2.88]
Gaillat 1985	232/937	175/749	+	13.2 %	1.08 [0.86, 1.35]
Kaufman 1947	40/5750	98/5153	-	10.7 %	0.36 [0.25, 0.52]
Klastersky 1986	2/26	4/21	·	1.4 %	0.35 [0.06, 2.16]
Koivula 1997	152/1364	166/1473	+	13.1 %	0.99 [0.78, 1.25]
Leech 1987	6/92	11/97		3.5 %	0.55 [0.19, 1.54]
Ortqvíst 1998	29/339	28/352		8.0 %	1.08 [0.63, 1.86]
Riley 1977	133/5946	170/6012	+	13.1 %	0.79 [0.62, 0.99]
Simberkoff 1986	211/1145	171/1150	+	13.3 %	1.29 [1.04, 1.61]
Subtotal (95% CI)	23038	22571	•	100.0 %	0.87 [0.69, 1.10]
Total events: 899 (Vaccine), 92	27 (Control)				
Heterogeneity: $Tau^2 = 0.09$; C	Chi² = 40.47, df = 10	(P = 0.0000 I); I ² =759	6		
Test for overall effect: $Z = 1.13$	5 (P = 0.25)				

Cochrane: Conclusions

- Results of meta-analysis supports the use of PPV to prevent IPD
- Minimal benefit for all-cause pneumonia
- Does not support the routine use of PPV to prevent all-cause pneumonia or mortality

Two types of pneumococcal vaccines available

Туре	Description	Options	Serotypes
Pneumococcal polysaccharide vaccines (PPSV)	Polysaccharide antigens	PPSV23 Pneumovax [®] 23	Antigens of 23 pneumococcal serotypes: 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F , 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20, 22F, 33F
Pneumococcal conjugate vaccine (PCV)	Polysaccharide antigens joined to a protein (conjugated)	PCV13* Prevnar 13®	Antigens of 13 pneumococcal serotypes: 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F, 6A**

*PCV13 replaced the previous version of PCV, known as PCV7, which included 7 pneumococcal serotypes. **6A is unique to PCV13

15 Serotypes Cause the Majority of Disease.²

 PHAC. National Advisory Committee on Immunization (NACI). Statement on the Use of Conjugate Pneumococcal Vaccine – 13 valent in Adults (Pneu-C-13). Available at: http://www.phac-aspc.gc.ca/publicat/ccdr-mtc/13vol39/acs-dcc-5/index-eng.php

2. PHAC. Invasive Pneumococcal Disease for Heath Professionals.

Available at: http://www.phac-aspc.gc.ca/im/vpd-mev/pneumococcal-pneumococccie/professionals-professionnels-eng.php

Rationale for conjugation

Siegrist CA. In: Plotkin et al, eds. Vaccines. 5th ed. Philadelphia, PA: Saunders Elsevier; 2008:17-36. 2. de Roux A, et al. Clin Infect Dis. 2008;46:1015-1023.
 Clutterbuck EA, et al. Immunology. 2006;119:328-337. 4. Pollard AJ, et al. Nat Rev Immunol. 2009;9:213-220.

Is PCV13 better than PPV23 in adults? Immunogenicity

- Mixed results when immunogenicity of PCV-7 compared to PPV-23:
 - Liver transplant: Not more immunogenic Kumar CID 2008;47(7)
 - Renal transplant: Better response to 2/7 serotypes but
 no difference at 3y
 Kumar JID 2003;187(10)
 - HSCT: Better response at 12mos (90.8% vs 55.6%; p=0.02) *Kumar CID 2007;45(12)*
 - Elderly: Better early response but no diff by 1y

Jackson Vaccine 2007;25(20)

Effectiveness?

 Only effectiveness data avail for PCV in immunocompromised adults is in pts with HIV

Vaccine	End Point	Vaccine Efficacy (95% CI)		
HIV-Infected Adults in Uganda: PPSV23 vs Placebo ¹ October 1995 – June 1998				
PPSV23 (n = 1392)*	Vaccine serotype IPD	–100% (–100% , 14%)		
	All-cause pneumonia	–89% (–100%, –12%)		
HIV-Infected Adults in Malawi: PCV7 vs Placebo ² February 2003 – October 2007				
PCV7 (n = 496) [†]	Vaccine serotype IPD	74% (30%, 90%)		
	All-cause pneumonia	25% (–19%, 53%)		

French N et al. *Lancet*. 2000;355:2106-2111.
 French N et al. *N Engl J Med*. 2010;362:812-822.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults N ENGLJ MED 372;12 NEJM.ORG MARCH 19, 2015

CAPiTA

- Randomized, double-blind, placebo-controlled trial (Sept. 2008- Aug. 2013)
- N= ~42,000 per arm
- CAP confirmed by CXR and etiology assessed using novel type-specific urinary antigen
- Mean duration of follow-up = 4y

CAPiTA- Results

- First episode vaccine-type CAP- 49 cases vs 90 cases: <u>VE</u> <u>45.6% (95%CI: 21.8-62.5%)</u>
 - NNV= 1110 (760-3500)
- First episode vaccine-type non-invasive, non-bacteremic CAP-33 vs 60: <u>VE 45.0% (95%CI: 14.2-65.3%)</u>
 - NNV= 1620 (1110-5130)
- First episode vaccine-type IPD- 7 vs 28: <u>VE 75.0% (41.4-90.8%)</u>
 - NNV= 2128
- All-cause CAP 747 vs 787: <u>VE 5.1% (-5.1-14.2%)</u>

Policy considerations for use of PCV13 in older adults

- Burden/incidence of pneumococcal disease in adults- IPD and CAP
- Serotype distribution of S. pneumoniae causing CAP in adults given routine PCV13 use in infants since 2011 (residual disease burden)
- Feasibility/acceptability of use of 2 pneumococcal vaccines in older adults
- Cost effectiveness/budget impact

Proportion of vaccine-preventable-type SpnCAP over time based on UAD_{PCV13} (2011-2015)

	Serotypes / serotypable (%) *						
Age	2011	2012	2013	2014	2015		
<65y	22/125	34/219	47/425	31/395	33/251		
	(17.6)	(15.5)	(11.1)	(7.9)	(13.2)		
≥50y	30/263	54/474	67/883	35/806	42/574		
	(11.4)	(11.4)	(7.6)	(4.3)	(7.3)		
≥65y	17/191	34/330	39/611	19/549	22/415		
	(8.9)	(10.3)	(6.4)	(3.5)	(5.3)		
Total	39/316	68/549	86/1036	50/944	55/666		
	(12.3)	(12.4)	(8.3)	(5.3)	(8.3)		

Immunocompetent Adults

- Indications: Age ≥65y, underlying comorbidities (including asthma), smoking, illicit drug use, homeless
- Single dose of PPSV23
- NEW: all patients aged ≥ 65 should receive 1 dose IRRESPECTIVE of a dose given <65y; interval = 5y
- PCV13: <u>Good</u> evidence to recommend PCV13 followed by PPV23 in immunocompetent adults 65+ not previously immunized against pneumococcal disease for prevention of CAP and IPD (NACI)

http://publications.gc.ca/collections/collection_2015/aspc-phac/HP40-135-2015-eng.pdf

Immunocompromised Adults

- Functional or anatomical asplenia (remember IBD)
- Sickle cell disease
- Hepatic cirrhosis
- Chronic renal failure or nephrotic syndrome
- HIV
- Other immunocompromising conditions/meds
- PCV13 X 1 lifetime dose
- PLUS TWO doses PPSV 23 (5y apart); one additional dose at age 65y if both doses provided <65y

NACI recommendation for pneumococcal vaccination for high-risk groups — at-a-glance

Risk Group	PCV13 Recommended	PPSV23 Recommended	PPSV23 Revaccination at 5 yrs	* Involving any part of the immune system including B-lymphocyt
Adults with hematopoietic stem cell transplants (HSCT)	~	~	~	T-lymphocyte (cell) mediated immunity, complement system
Adults with HIV	~	~	~	(properdin, or factor D deficiencies), or
Adults with Asthma		~		phagocytic functions.
Adults with immunosuppressive cor	nditions including:			[†] Including use of long- term corticosteroids,
Asplenia (anatomical or functional)	~	~	~	chemotherapy, radiation therapy, post-organ-transplant
Sickle cell disease or other hemoglobinopathies	~	~	~	disease modifying antirheumatic drugs.
Congenital immunodeficiencies*	v	V	~	
Immunosuppressive therapy [†]	~	~	~	
Malignant neoplasms including leukemia and lymphoma	~	V	~	
Solid organ or islet cell transplant (candidate or recipient)	~	~	~	

Pneumococcal conjugate vaccine (PCV13) dose sequence — NACI recommendations

PHAC. National Advisory Committee on Immunization (NACI). Statement on the Use of Conjugate Pneumococcal Vaccine – 13 valent in Adults (Pneu-C-13). Available at: <u>http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/13vol39/acs-dcc-5/index-eng.php</u>

Conclusions

- Pneumococcal CAP and IPD are associated with considerable morbidity and mortality in Canadian adults
- Most pneumococcal disease is potentially vaccine preventable
- PPSV23 uptake suboptimal
- Vaccine recommendations complex
- Understanding the residual disease burden in adults due to PCV13 serotypes is critical to inform vaccine recommendations in this population
New Generation HPV vaccine: Gardasil9

Most frequent HPV genotypes in invasive cervical cancers 1990-2010, by region

Region	No. of Cases	HPV genotypes (in order of prevalence)
World	30 848	16, 18, 58, 33, 45, 31, 52, 35
Africa	2011	16, 18, 45, 33, 35, 52, 51, 58
Eastern Asia	11 651	16, 18, 58, 52, 33, 31, 45, 59
Western/Central Asia	2051	16, 18, 45, 33, 31, 35, 58, 52
Europe	9015	16, 18, 31, 33, 45, 35, 58, 52
North America	2485	16, 18, 45, 31, 33, 52, 35, 39, 59, 58
South/Central America	3010	16, 18, 31, 45, 33, 58, 52, 35
Oceania	625	16, 18, 45, 73, 39, 35, 31, 53, 33, 52

Li N. International Journal of Cancer. 2011;128:927-935

Relative contribution of HPV types to cervical cancers, worldwide

de Sanjose et al. Lancet Oncol. 11:1048-56 (2010)

Efficacy of a novel 9-valent HPV vaccine in 16-26 year old women

Endpoint	9vHPV	qHPV	Efficacy	
_	vaccine	Vaccine	(95%CI)	
	No cases/n	No of cases/n		
High grade HPV31/33/45/52/58 cervical/vulvar/vaginal disease	1/6016	30/6017	96.7 % (80.9-99.8)	
Any grade HPV31/33/45/52/58 cervical/vulvar/vaginal disease	3/6016	103/6017	97.1 % (91.8-99.2)	
HPV31/33/45/52/58 6 months related persistent infection	35/5939	810/5953	96.0 % (94.4-97.2)	

Joura E. Abstract SS 8-4 Eurogin Florence Nov 3-6, 2013

Immunogenicity of HPV9 in boys and girls 9-15 years old; comparison to women 16-26 years old

- At 4 weeks post-dose 3, over 99% of girls, boys, and young women in the primary analysis population seroconverted for all 9 HPV types
- Non-inferiority of the Ab responses for all 9 HPV types in both girls and boys, 9 to 15 years of age relative to Ab responses in young women, was established.
- Therefore HPV9 vaccine efficacy findings in young women 16 to 26 years of age can be bridged to adolescent girls and boys 9 to 15 years of age.

Van Damme, P. Abstract SS 8-5 EUROGIN, Florence Nov 3-6, 2013

Conclusion

- HPV9 is non-inferior to HPV4 for HPV 6,11,16,18
- HPV9 induces strong Ab response and excellent efficacy against HPV31,33,45,52,58 (97% against CIN2+)
- Responses to HPV9 are similar in males and females
- HPV9 is safe and well tolerated in women previously vaccinated with HPV4 (data not shown)
- Replacing HPV4 with HPV9 will be a challenge as no efficacy data in males, no data on 2 doses, etc---- unlikely to get similar indications=== big dilemma for policy makers!

Meningitis vaccines

Neisseria meningitidis

- Encapsulated Gram negative diplococci
- Serotype based on polysaccharide capsule
- Serotypes A, B, C, Y, W-135 cause human disease
- Colonizes the oropharynx of up to 10%
- Transmitted by respiratory droplets and direct contact
- Risk of transmission low- 2-4 cases per 1000 household contacts (500-800x risk in general population)

IMD in Canada: 1995-2011

Summary of IMD in Canada by serotype (2007-2011)

	2	2011	2007 to 2011			
Serogroup	Number of cases	Incidence (cases per 100,000 population)	Average annual number of cases (range)	Average annual incidence (cases per 100,000 population)	Median age (years)	Case fatality ratio
А	0	0	0.2 (0 to 1)	0	16	0.0%
В	108	0.31	111 (92 to 131)	0.33	16	6.0%
С	4	0.01	19 (4 to 30)	0.06	44.5	15.3%
W-135	10	0.03	11.2 (7 to 14)	0.03	38	8.5%
Y	36	0.10	33.8 (29 to 37)	0.10	47	12.1%
Other	4	0.01	3 (1 to 6)	0.01	34	0%
Non- groupable	1	0	1.6 (1 to 2)	0	28	10.0%
Unknown	12	0.04	12.8 (11 to 16)	0.04	16.5	8.2%
All serogroups	175	0.51	192.4 (154 to 229)	0.57	20	8.2%

Summary of IMD in Canada by P/T

Available meningococcal vaccines

	Age indication	Schedule	Manufacturer
Monovalent Men C-C			
Meningitec Menjugate NeisVac-C			Pfizer Novartis Baxter
Quadrivalent Men-C			
Menactra Menveo Nimenrix	9mos-55y 2mos-55y 12mos-55y		Sanofi Novartis GSK
4CMenB (Bexsero)	2-17у	1-10y – 2 doses, 2m apart ≥11y- 2d, 1 mos apart	

NACI- who should get Quadrivalent Conj Men A,C, Y, W-135 vaccine?

- Persons 2-(55)y (either vaccine):
 - functional/anatomic asplenia*
 - complement deficiency and other specified immunodeficiency (congenital)*
 - HSCT*
 - SOT, HIV
 - travelers
 - lab personnel
 - military recruits
 - close contacts of non C disease*

FAQ's

- Does it matter which quad vaccine? NO
- Do I have to wait a certain amount of time if they have received Men-C-C in school? NO
- If receiving quad Men vaccine before grade 7, should they still get the grade 7 dose? YES
- Can I give Quad men and Men B at the same time? YES
- How much does it cost? ~\$150/dose

N. menigitidis Type B- Bexsero

- Bexsero- 4 component protein vaccine
- Surveillance suggests will cover ~2/3 of Canadian Men B strains
- 3 dose series in infants; 2 doses in adolescents (up to 10y give 2 months apart; ≥11y give 1 month apart)

NACI recommendations

- Individuals >2 mos who are:
 - At high risk of meningococcal disease
 - Have been in close contact with a case of serogroup B IMD
 - Who may be at risk due to an outbreak
 - Who are without contraindications and who wish to be immunized

Why didn't NACI recommend a universal infant program?

- Rare disease
- Vaccine only covers about 2/3 of strains
- No efficacy or duration of protection data (only immunogenicity)
- No data on impact on colonization
- Temp≥38 C observed in 61% of infants when given with other routine vaccines (vs 38% when given alone)

Absenteeism/medical visit

Summary of AE's

- Fever on day 1 or 2 expected in 10-20% and is reduced by prophylactic acetaminophen
- 5-10% will miss school or work for 1-2d for general malaise or sore arm occurring within 48h
- No serious adverse events observed in 46,000 kids
 <20y in Quebec in 2014

FAQs

- Can I give Bexsero and quadrivalent vaccine at the same time? YES
- Is it OK to give to adults? YES
- How much does it cost? ~\$140/dose

MMR boosters in adults**

• Non-immune

- adults born in or after 1970*- 1 dose
- Students born in or after 1970- 2 doses
- **HCW-** irrespective of year of birth- 2 doses
- Military personnel- irrespective of year of birth- 2 doses
- Travellers: Born after 1970- 2 doses; before 1970- 1 dose

*proof of immunity= documentation of 2 doses of MMR after first Bday, OR history of lab-confirmed infection OR Lab evidence of immunity

Persons born **before 1970 considered immune unless in a high-risk group

QUESTIONS & DISCUSSION

